

الموضوع الأول

التمرين الأول: (5نقاط) عين الاقتراح الصحيح في كل حالة من الحالات الآتية مع التعليل:

: يساوي
$$ln[(2-\sqrt{3})^{2022}] + ln[(2+\sqrt{3})^{2022}]$$
 يساوي (1

: قان y=2 قان على مجال مفتوح يشمل 2،إذا كان منحنى f يقبل مماسا معادلته y=2 قان f

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = +\infty - \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 0 - \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 1 - 1$$

: ا IR المعرفة على $y=\sqrt{2}\,y'-1$ المعرفة على الدوال المعرفة على (3

$$f(x) = Ce^{\sqrt{2}x} + 1$$
 ($= Ce^{\sqrt{2}x} - 1$ ($= Ce^{\sqrt{2}x} + \frac{\sqrt{2}}{2}$)

لان نهاية g الدالة g النسبة g(x) = |x-1|(x+1) : g(x) = |x-1|(x+1)

التمرين الثاني: (4نقاط)

نعتبر D₂; D₁ زهرتی نرد ذات ستة أوجه حیث:

- وجوه النرد D₁ متساوية الاحتمال , أربعة منها تحمل الرقم 1 و اثنان منها تحمل الرقم 2 .
- . $\frac{k}{21}$ هو k مرقمة من k الر k حيث أن احتمال ظهور الوجه الذي يحمل الرقم k هو k
 - D_1 مرة واحدة فما هو احتمال ظهور الرقم D_1 أ- إذا رمينا النرد D_1

ب- إذا رمينا النرد D_2 مرة واحدة فما هو احتمال ظهور الرقم δ %.

: 1 معا فما هو احتمال ظهور الرقم D_2 ; D_1 إذا رمينا النردين -2

أ -مرة واحدة بالضبط ب) مرتين

3- نرمي النردين معا و ليكن X المتغير العشوائي الذي يرفق بكل رمية عدد المرات الذي يظهر فيها الرقم 2

أ حين قانون الاحتمال للمتغير العشوائي X

ب الممل ألرياضياتي لهذا المتغير العشوائي

التمرين الثالث: (4نقاط)

$$u_n = \int_n^{n+1} e^{2-x} \ dx$$
: يلي IN كما يلي المتتالية العددية المعرفة على المتالية المعرفة المعرفة على المتالية المعرفة المعرفة

$$u_n = e^{2-n} - e^{1-n}$$
 : n عدد طبیعی 1

$$u_{
m n}>0:n$$
 ثم برهن بمبدأ الاستدلال بالتراجع . انه من أجل كل عدد طبيعي ${
m u}_{
m 0}$

$$(\mathbf{u_n})$$
 מידי וואנים והידי ויבא ישת הייב $u_{\mathrm{n}+1}-\mathbf{u_n}$ וואנים וואנים $\mathbf{u_n}$ לבייבי וואנים וואנים $\mathbf{u_n}$

$$\lim_{n \to +\infty} u_n$$
 بـ – استنتج أن المتتالية (un) متقاربة ثم احسب

$$S_n = u_0 + u_1 + \cdots + u_n : n$$
 عدد طبیعي $S_n = u_0 + u_1 + \cdots + u_n : n$ غضع من أجل كل عدد طبیعي $S_n = u_0 + u_1 + \cdots + u_n : n$ أحسب بدلالة $S_n = u_0 + u_1 + \cdots + u_n : n$ أحسب بدلالة $S_n = u_0 + u_1 + \cdots + u_n : n$

التمرين الرابع: (7نقاط)

صب نهاية الدالة
$$f$$
 عند ∞ ثم فسر النتيجة هندسيا $-\infty$ ئم فسر النتيجة هندسيا $+\infty$

$$f(x) = \frac{x + \ln(1 + e^{-x})}{e^x} : x$$
 جين انه من أجل كل عدد حقيقي عدد ولا عدد († 2 بين انه من أجل كل عدد f عند f عند f غند أحسب نهاية الدالة أ

$$g(x) = \frac{x}{1+x} - \ln(1+x) : -1; -\infty$$
 [المعرفة على المجال g المعرفة على المجال -3

$$[0;+\infty]$$
 على المجال $]0;+\infty$

ب أحسب
$$g(x)$$
 ، ثم إشارة $g(x)$ من أجل x موجب تماما

$$f'({
m x}) = rac{{
m g}({
m e}^{
m x})}{{
m e}^{
m x}}:{
m x}$$
 أ- بين أنه من أجل كل عدد حقيقي أ

ب – استنتج أن الدالة
$$f$$
 متناقصة تماما على مجموعة تعريفها ، ثم شكل جدول تغيراتها ج – مثل بيانيا (C_f)

$$F(x) = \int_0^x f(t)dt$$
 : نعتبر الدالة $F(x) = \int_0^x f(t)dt$ با المعرفة على المجال $F(x) = \int_0^x f(t)dt$

$$\frac{1}{1+e^t} = 1 - \frac{e^t}{1+e^t}$$
: t عدد حقیقی عدد من أجل كل عدد عدد عقیق 1

$$rac{1}{1+e^t}=1-rac{{
m e}^t}{1+{
m e}^t}: t$$
 عدد حقیقی 1 $F({
m x})=-\ln\left(rac{1+{
m e}^{
m x}}{{
m e}^{
m x}}
ight)-f({
m x})+2{
m ln}2$ عدد حقیقی 2

$$x=0$$
 , $x=\ln 4$, $y=0$ المستقيمات التي معادلاتها (C_f) و المستقيمات التي معادلاتها 3

التصحيح النموذجي

التمرين الثاني (4نقاط)

$$(0,5)$$
 أ- احتمال ظهور الرقم 2 هو $\frac{1}{6}$ أي (1

$$(0,5)$$
 $2/7$ و احدة احتمال ظهور الرقم 6 هو $\frac{6}{21}$ أي D_2 مرة واحدة احتمال ظهور الرقم

$$\frac{4}{6}\left(1-\frac{1}{21}\right)+\frac{1}{21} imes \frac{2}{6}=\frac{82}{126}$$
 فقط او في \mathbf{D}_2 فقط او في واحدة بالضبط اي في الضبط اي في \mathbf{D}_1 فقط او في (0,5)

$$0,5$$
 $\frac{4}{6} \times \frac{1}{21} = \frac{4}{126}$ معا D_2 و D_1 و D_2 D_1 ب- مرتين في D_1 و D_2 D_3 D_4 في D_4 في D_2 D_3 فيم D_4 هي D_4 في D_5 و D_5 فيم D_5 فيم

		ر ي ر	J. U
$X=x_i$	0	1	2
$P(X=x_i)$			

$$0,25 P(X=0) = \frac{4}{6} \left(1 - \frac{2}{21}\right) = \frac{4 \times 19}{126} = \frac{76}{126}$$

0,25
$$P(X = 0) = \frac{4}{6} \left(1 - \frac{2}{21} \right) = \frac{4 \times 19}{126} = \frac{76}{126}$$

0,25 $.P(X = 1) = \frac{2}{6} \times \left(1 - \frac{2}{21} \right) + \frac{2}{21} \times \frac{4}{6} = \frac{2}{6} \times \frac{19}{21} + \frac{8}{126} = \frac{38 + 8}{126} = \frac{46}{126}$
0,25 $.E(X) = 0 \times \frac{76}{126} + 1 \times \left(\frac{46}{126} \right) + 2 \left(\frac{4}{126} \right) = \frac{54}{126} = \frac{3}{7}$

$$P(X=2) = \frac{2}{6} \times \frac{2}{21} = \frac{4}{126}$$

$$0.75 .E(X) = 0 \times \frac{\frac{76}{126} + 1}{126} \times \left(\frac{\frac{46}{126}}{126}\right) + 2\left(\frac{\frac{4}{126}}{126}\right) = \frac{54}{126} = \frac{3}{7}$$

روانقاط) التمرين الثالث
$$(4)$$
نقاط) منابع المتعارب الثالث $n = e^{2-n} - e^{1-n}$. $n = e^{2-n} - e^{1-n}$. $n = e^{2-n}$.

$$0.5 .u_n = \int_n^{n+1} e^{2-x} dx = -[e^{2-x}]_n^{n+1} = -[e^{1-n} - e^{2-n}] = e^{2-n} - e^{1-n}$$

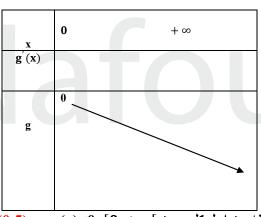
$$\mathbf{u}_{\mathrm{n}} > \mathbf{0}$$
 ثم البرهان بالتراجع ان \mathbf{u}_{0} - حساب \mathbf{u}_{0} ثم البرهان بالتراجع ان $\mathbf{p}(\mathbf{n})$: $\mathbf{u}_{\mathrm{0}} > \mathbf{0}$

$$P(n): u_n > 0$$
 نضع $0,25$... $u_0 = e^2 - e:$

المرحلة 01 : من اجل
$$n=0$$
 نجد $u_0=e^2-e$ و عليه $u_0=n=0$ محققة

$$0,75$$
 ، $P(n+1)$ ، ، $P(n+1)$ ونفرض صحة ونفرض عدد طبيعي المرحلة $P(n)$ المرحلة $P(n+1)$ ، ،


```
3 - اثبات أن (u<sub>n</sub>) متتالية هندسية
 (0,5) u_0={
m e}^2-e ومنه u_{
m n} ومنه u_{
m n} متتالية هندسية اساسها u_{
m n} و حدها الأول u_{
m n+1}=rac{1}{2}
                                                                   أ- تعيين اتجاه تغير المتتالية (un)
                                        ، \mathbf{u_{n+1}} - \mathbf{u_n} = -(e-1)^2 e^{-n} . n من اجل کل عدد طبیعي
                                         نلاحظ u_{\rm n} < 0 متناقصة u_{\rm n+1} - u_{\rm n} < 0 نلاحظ u_{\rm n+1} = u_{\rm n} = 0 وعليه المتناج ان المتنالية متقاربة
(0,5) \lim_{n 	o +\infty} u_n = 0 متناقصة تماما و محدودة من الاسفل بالعدد 0 فهي متقاربة (u_n)
                                                                              (0,5).S_n = e^2(1 - \frac{1}{e^{n+1}})
                                                                              (0,5) .\lim_{n\to+\infty} S_n = e^2
                                                                                    التمرين الرابع (7نقاط)
                                                                         (0,5) \lim_{x\to -\infty} f(x) = 1-1
               (0,25)-\infty التفسير الهندسي : (C_f) يقبل مستقيم مقارب افقي معادلته y=1 بجوار
  (0,25) f(x) = \frac{1}{e^x} ln[e^x(e^{-x}+1)] = \frac{x + ln(1 + e^{-x})}{e^x} : x عدد حقیقی د عدد حقیقی - 2
                                                                    \lim_{x\to+\infty}f(x)=0-\varphi
               (0,25)+\infty التفسير الهندسي : (C_t) يقبل مستقيم مقارب افقي معادلته y=0 بجوار
                                                                                 3 -أ- دراسة تغيرات الدالة g
                                                          (0,25) \lim_{x\to+\infty} g(x) = -\infty النهايات
           g'(x) = \frac{1}{(1+x)^2} - \frac{1}{1+x} = \frac{-x}{(1+x)^2} ولدينا [0; +\infty[ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي x
                       (0,5) g'(x) < 0 [0; +\infty[ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي
                                                                      g(0)=0 بـ جدول التغيرات: لدينا
```

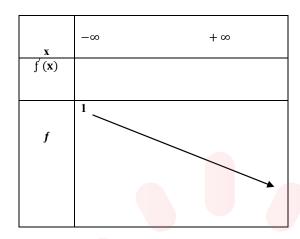


من جدول التغيرات نستنتج انه من اجل كل x من g(x) < 0 [0; + ∞] من جدول التغيرات نستنتج انه من اجل كل g(x) < 0

f'(x) -أ- 4

 $0.5 \ f'(x) = rac{g(e^x)}{e^x}$ أي $\frac{g(e^x)}{e^x}$ أي IR معرفة وقابلة للاشُتقاق على $\frac{g(e^x)}{e^x}$ ولدينا : $\frac{g(e^x)}{e^x}$ الدالة $\frac{g(e^x)}{e^x}$ اشارتها من اشارة $\frac{g(e^x)}{e^x}$ الدالة $\frac{g(e^x)}{e^x}$ من اشارة $\frac{g(e^x)}{e^x}$ الدالة ومنه الدالة

f جدول تغيرات الدالة



 $(1)_{C_f}$ انشاء (2)

Nafouz